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Learning skills in open-world environments is essential for developing agents capable of handling a variety
of tasks by combining basic skills. Online demonstration videos are typically long but unsegmented,
making them difficult to segment and label with skill identifiers. Unlike existing methods that rely on
sequence sampling or human labeling, we have developed a self-supervised learning-based approach
to segment these long videos into a series of semantic-aware and skill-consistent segments. Drawing
inspiration from human cognitive event segmentation theory, we introduce Skill Boundary Detection
(SBD), an annotation-free temporal video segmentation algorithm. SBD detects skill boundaries in a
video by leveraging prediction errors from a pretrained unconditional action-prediction model. This
approach is based on the assumption that a significant increase in prediction error indicates a shift
in the skill being executed. We evaluated our method in Minecraft, a rich open-world simulator
with extensive gameplay videos available online. Our SBD-generated segments improved the average
performance of conditioned policies by 63.7% and 52.1% on short-term atomic skill tasks, and their
corresponding hierarchical agents by 11.3% and 20.8% on long-horizon tasks. Our method can leverage
the diverse YouTube videos to train instruction-following agents. The project page can be found in
https://craftjarvis.github.io/SkillDiscovery/.

1. Introduction along with the immense diversity of skills in open
worlds, makes skill learning particularly challeng-

Most existing LLM-based iI'lStI'llCtiOI’l-fOHOWiI‘lg ing, especially in partiauy observable settings.

agents adopt a two-layer structure of planner and
controller to complete tasks, which first convert
the instruction into atom skills through the plan-
ner, and then use a conditioned policy to convert
it into actions based on the current observation
to interact with the environment (Cheng et al.,
2024; Li et al., 2024; Wang et al., 2024a, 2023b,
2024b, 2025). When training these agents, we
need to first convert long sequences into a series
of short atom skill sequences, and then train the
controller and planner separately. However, inter-
actions in real-world videos are often long-term
and unsegmented with detailed language skills.

Learning skills from long-sequence videos is
critical for building such hierarchical agents. How-
ever, the concept of a “skill” is ill-defined and
varies widely across domains such as video gam-
ing (Cai et al., 2023b; Hafner et al., 2023; Wang
et al., 2024a; Zhang et al., 2024), robotic con-
trol (Zitkovich et al., 2023), and autonomous
driving (Wang et al., 2023a). This ambiguity,

To enable open-world skill learning from unseg-
mented demonstrations (continuous streams of
observation-action pairs without explicit labels),
the first challenge is to segment these streams into
semantically meaningful, self-contained skills.

We list the existing segmentation methods in
Table 1, including the plain sequential sampling,
reward-driven methods, top-down, and bottom-
up methods. The native sequential sampling
segmentation methods (Cai et al., 2023b; Lifshitz
etal., 2023), divide videos into segments of prede-
fined lengths (e.g., fixed length, uniform distribu-
tion). However, these methods do not ensure that
each segment contains a distinct skill. Addition-
ally, predefined lengths may not match the actual
distribution of skill lengths in real-world scenarios
(see Section 4.4). Reward-driven methods (Sut-
ton et al., 1999) discover skills through the envi-
ronment’s reward signal. It is limited by its inabil-
ity to capture skills that lack associated rewards
and by the risk of splitting a single skill into multi-
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Table 1 | Comparisons between existing segmenta-
tion methods and our method SBD. Existing meth-
ods usually rely on human-designed rules, while our
method is learning-based. Sequential sampling can
result in a single skill spanning different segments or
multiple skills located within one segment. Reward-
driven methods require additional reward informa-
tion, which is challenging for human annotators to
label. Top-down methods often result in limited skill
diversity and high computation costs. Bottom-up
methods are limited in fully observable environments
and hard in visually partially observable environments.
[] are visual observations and O are actions.

ple segments when rewards are repeatedly gained
during execution. Top-down methods (Belkhale
et al., 2024; Shiarlis et al., 2018) rely on prede-
fined skill sets from human experts. They use
manual labeling or supervised learning to seg-
ment videos. Although this approach can produce
reasonable results, it is expensive and limited by
the narrow range of predefined skills. Bottom-up
methods (Pertsch et al., 2025; Zhu et al., 2022)
use algorithms such as agglomerative clustering
or byte-pair encoding (BPE) (Gage, 1994) to split
action sequences. However, they struggle in par-
tially observable settings where both observations
and actions must be considered because these al-
gorithms cannot deal with observations due to the

high dimensionality. All the above methods usu-
ally rely on human-designed rules to segment the
unsegmented videos, which highlights the need
for an effective and label-free method that can
automatically segment skills from unsegmented
demonstrations in open worlds.

Inspired by event segmentation theories
(EST) (Zacks et al., 2007), which propose that
humans naturally partition continuous experi-
ences into discrete events when prediction er-
rors in perceptual expectations rise, we introduce
Skill Boundary Detection (SBD)—a method for
autonomously identifying potential skill bound-
aries within extended trajectories. SBD employs
a predictive model trained on a dataset of unseg-
mented videos to forecast future actions based
on past observations, effectively capturing tem-
poral dependencies (Baker et al., 2022). We then
use this pretrained model to make predictions on
an unsegmented video and compare them to the
ground truth actions. A significant increase in
prediction error indicates a shift in the skill being
executed (Theorem 3.4), enabling us to detect
boundaries between different skills in the video.
SBD relies on self-supervised learning, removing
the need for additional human labeling. This
allows SBD to utilize a wide range of YouTube
videos to train instruction-following agents.

We evaluate SBD in open-world Minecraft (Fan
et al., 2022; Guss et al., 2019; Lin et al., 2023).
First, we apply SBD to create a segmented
Minecraft video dataset. We then train the video-
conditioned policy (Cai et al., 2023b) and the
language-conditioned policy (Lifshitz et al., 2023)
on this dataset. We evaluate these policies on
diverse Minecraft skills benchmark (Lin et al.,
2023). The results show significant improve-
ments compared to the existing policies (Cai et al.,
2023b; Lifshitz et al., 2023), with performance
increases of 63.7% and 52.1% compared to the
original methods, respectively. We also test their
corresponding hierarchical agents using behavior
cloning and in-context learning, achieving per-
formance increases of 11.3% and 20.8%, respec-
tively. These findings underscore the effectiveness
of our proposed method for skill discovery from
unsegmented demonstrations and its potential to
advance open-world skill learning.
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Figure 1 | Pipeline of our method SBD for discovering skills from unsegmented demonstration videos.
Stage I: An unconditional Transformer-XL based policy model (Baker et al., 2022; Dai et al., 2019) is pretrained
on an unsegmented dataset to predict future actions (labeled by an inverse dynamics model) based on past
observations. Stage II: The pretrained unconditional policy will produce a high predicted action loss when
encountering uncertain observations (e.g., deciding whether to kill a new sheep) in open worlds. These
timesteps should be marked as skill boundaries, indicating the need for additional instructions to control
behaviors. We segment the long unsegmented videos into a series of short atomic skill demonstrations. Stage
III: We train a conditional Transformer-XL based policy model on the segmented dataset to master a variety of
atomic skills. Stage IV: Finally, we use hierarchical methods (a combination of vision-language models and the
conditional policy) to model the long demonstration and follow long-horizon instructions.

2. Problem Formulation

Skills in behavioral cloning. Behavioral cloning
learns a policy « that maps observations o from
the observation space O to actions a in the
action space A using supervised learning on
observation-action pairs (o;, ai)'iT=1 obtained from
expert demonstrations. In partially observable en-
vironments, past observations o1, are often used
instead of the current observation o, as input to
the policy 7. Additionally, to allow the agent to
dynamically adjust its behavior based on its objec-
tive, recent advances (Du et al., 2021; Khandel-

wal et al., 2021; Xie et al., 2023) focus on learning
goal-conditioned policies 7 (01.;, g), where g rep-
resents the goal. This type of goal-conditioned
policy can be considered a “skill”.

Hierarchical agent architecture. Directly learn-
ing policy m (01, g) is challenging in complex
open-world environments like Minecraft. Goals
such as build a house or mine diamond
blocks involve numerous intermediate steps,
making it computationally and conceptually diffi-
cult to model an agent’s behavior without break-
ing the goal into manageable parts. To tackle
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this, hierarchical agent architectures are often
used (Cai et al., 2024a; Driess et al., 2023; Igbal
et al., 2022; Wang et al., 2024a). These archi-
tectures consist of a high-level planner and a
low-level controller. The planner decomposes the
overall goal into a series of sub-goals and decides
which one the controller should address. The
controller then focuses on achieving the current
sub-goal by employing a specific skill. Specifically,
for a certain t, the policy can be represented as:

ﬂ(a|01:tzg) = 7[]_(gt|o]_;t,g)7[2(a|0],;t,gt) (1)

where ;1 is the planner’s policy and x5 is the
controller’s policy. The planner periodically (not
at every step) checks whether the current sub-
goal has been finished and determines whether
to change policy, so g; is relatively static and does
not change frequently.

Identifying implicit skills in offline trajectories.
A critical challenge in training hierarchical agents,
as described above, is the identification of skills
within the offline trajectory data. To be more
specific, given t = (o;, ai)isz we want to split
it into 71 = (o;, ai)fil,rz = (oi,ai)gtl, R
(o, al-)l.T:tk_1 where each sub-trajectories t; shows
an independent skill n(g;). Since some con-
trollers use self-supervised methods to learn sub-
goals (Cai et al., 2023b; Lifshitz et al., 2023),
we can ignore the language labels of goal g;, but
must identify ¢; (i.e., the moments at which the
agent adopts a different skill). For clarity, in the
subsequent sections, we denote the skill adopted
at a certain time step t as =, corresponding to

7(ge).

3. Method

We first introduce our overall pipeline to build
policies and long-horizon hierarchical agents
based on unsegmented videos in Section 3.1.
Then we introduce how we split the unsegmented
demonstration into our policy and agent learning
sequences in Section 3.2. We finally introduce
the implementation details on Section 3.3.

3.1. Pipeline

Given a long sequence of trajectories D =
(o3, al-)iT:1 with interleaved visual observations o;

Algorithm 1 Skill Boundary Detection

1: Input: (o;, a;,¢;)]_;, a model M to predict a,

given o1.. e; is the boolean external informa-
tion indicating whether this step should be a
boundary.

2: Initialize: begin « 1, loss_history « [],
boundaries « []

3: fort —1toT do
4: loss « M(a | Obegin:t)
5:  loss_history.append(loss)
6:  if loss — mean(loss_history) > GAP or e,
is true then
7: boundaries.append(t)
8: begin « ¢
9: loss_history « []
10:  end if
11: end for

12: Return: boundaries

and actions a;, we first train an unconditioned pol-
iCY Tyncondition USINE imitation learning to predict
the actions as follows:

rrbin Z —log T uncondition (@tl01, - - -, 0).  (2)
te[1...T]

When training on action label-free YouTube
videos, the action labels are generated from In-
verse Dynamics Model (Baker et al., 2022). We
then evaluate this unconditioned policy 7 yncondtion
on the entire dataset D of long sequences. We
developed an automated method called SBD to
segment the complete video into a series of short
segments Dy, = (05, a;)}-,, based on these evalu-
ation results, where m and n is the selected seg-
mentation timestamps. These short segments Dy.q
are then used for skill learning to obtain condi-
tioned policies (Cai et al., 2023b; Lifshitz et al.,
2023). Finally, we integrate these skills with vi-
sion language models to build hierarchical agents,
enabling them to learn and follow long-horizon
tasks in long video sequences (Wang et al., 2024b,
2025). We show the overall pipeline is illumi-
nated in Figure 1.

3.2. Skill Boundary Detection

SBD takes a long unsegmented trajectory as
input and learns an unconditional model to pre-
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dict the next action based on previous observa-
tions. The model does not know about implicit
skill transitions. To simulate the model’s memory,
a sliding window is used. At each time step t,
the model predicts the next action and compares
it with the ground truth to compute the loss. A
skill transition is considered likely if the loss ex-
ceeds the average loss by a hyperparameter, GAP,
or if an external indicator is true. In such cases,
t is marked as a boundary. The model’s mem-
ory is then cleared, and the algorithm proceeds
to analyze the next sub-trajectory. The two core
components of the algorithm are loss and external
information.

3.2.1. Boundary with Entropy Loss

In this section, we explain the core idea of our
method: why loss can indicate skill boundaries.
To support this, we introduce three key assump-
tions about skills: skill consistency, skill confi-
dence, and action deviance at skill transition.

The first assumption is that the skill being used
does not change frequently. The parameter K is
a large number that determines how rare these
changes are. The idea is that the agent should
consistently stick to a skill unless there is a strong
reason to switch to another, which would result
in an increase in predictive loss for detecting a
skill transition.

Assumption 3.1 (Skill Consistency). There exists
an adequately large K, Vt,

P(m1 # melo1:e41) < 1/K 3)

The second assumption states that, at any given
time, the agent is confident in the action it takes.
This means the probability of the agent choos-
ing an action with high confidence is very high.
The parameter c sets the minimum confidence
level, while 8 is a small value representing the
frequency with which the policy might act with
lower confidence. This assumption ensures that
the policy reliably makes decisions based on its
learned skills, rather than being uncertain in its
actions. This helps the unconditional model make
accurate predictions when the agent does not
change its skill.

Assumption 3.2 (Skill Confidence). There exists
¢ and an adequately small &, Vt,

P(m(atlo1) >¢) >1-86 @)

The third assumption posits that when an agent
changes its skill, it is likely to perform an action
that is significantly less probable under the pre-
vious skill. This "surprising" action generates a
clear signal, enabling us to detect the skill transi-
tion. Although the agent might change policies
without performing a surprising action, such in-
stances suggest that the agent is in a transitional,
ambiguous phase between two policies, which is
inherently challenging to identify. In essence, we
aim to recognize the first clear skill boundary.

Assumption 3.3 (Action Deviance at Skill Tran-
sition). There exists m, Vt, when 71 =715 = ... =
Te F Teil,

e (are1]01:641) < 1
(TTi2; me(ailor)) e 2

m (5)

By the law of total probability, we have

P(a+1101:041) = P(741 = ¢]01:041) e (Ae41101:041)

+ Z P(me1 = 7[01:041) 7 (Ae41]01:641)
TET;

©)

Intuitively, if the agent changes its skill, the
predictive probability will be low. This is because,
in Eq. (6), in the first term the probability of
a.+1 under the original skill 7, (a¢1]01:¢+1) is low,
and in the second term the probability of skill
transition is low. On the contrary, if the agent does
not change its skill, both terms will be high so the
predictive probability will be high. Therefore, we
have the following theorem regarding the bounds
of relative predictive probability under scenarios
of skill transition and non-transition.

Theorem 3.4 (bounds of relative predictive prob-
ability). If w1 = @y = ... = m; = 741, then we
have

P(ai1]01:041) (K-1)c

P((H§:1 P(ailo1:)) /! Tk

)>1-8 (7)
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If 11 = Mg = ... = M, # M41, then we have
p( lj(at+1|01:t+1) _ < Km N 1 )
(IT; P(ailor)) 1t 2(K=1)  c(K-1)
>1-té
(8)

Proof. See Appendix A for the detailed proof. O

Ifc > mand (K—4)c? > 2, then the lower bound
of relative predictive probability under skill tran-
sition in Theorem 3.4 is greater than the upper
bound of it under skill non-transition. Therefore,
the theorem demonstrates that the model predicts
actions less accurately when the agent changes
its skill. Our action-prediction model uses the
negative log-likelihood of actions —log P(a;|o1:)
as loss. Consequently, at line 6 of Algorithm 1,
when the loss exceeds the average loss by a pre-
defined threshold, it is likely that a skill transition
has occurred.

3.2.2. Boundary with Auxiliary Information

In Section 3.2.1, we demonstrate that our algo-
rithm can identify the first distinguishable skill
boundary using only observations and actions.
However, some datasets include additional exter-
nal information, such as privileged in-game data
or VLM detections. Incorporating these auxiliary
signals improves the detection of skill boundaries
that are otherwise difficult to recognize through
loss-based boundary detection alone. For exam-
ple, in Minecraft, crafting an item does not in-
volve abrupt changes in mouse movement, mak-
ing it hard to detect boundaries purely from pre-
dictive action loss. In such cases, in-game logs of
successful crafting events provide valuable hints.
It is important to note that this is an optional
component of our algorithm; as we will discuss
in Section 4.3, it also performs well on datasets
without external auxiliary information.

3.3. Implemetation Details

Unconditioned Policy and Segmentation De-
tails. For the unconditioned policy 7 yncondition
in Stage I, we use the pre-trained vpt-3x mod-
els (Baker et al., 2022). This is a foundational

Transformer-XL (Dai et al., 2019) based model
pretrained on large-scale YouTube data and fine-
tuned on the early-game dataset using behavioral
cloning. The hyperparameter GAP in Stage II
is set to 18 considering the average trajectory
length and semantics. As for the external infor-
mation, we use event-based information such as
mine_block:oak_log or use_item:torch
available in the contractor dataset (Baker et al.,
2022). To identify potential skill transitions, only
the final event in a series of identical consecutive
events is marked as positive, as it signifies a pos-
sible skill transition. For instance, if the agent
chops a tree repeatedly and then crafts a table,
the video should be split at the moment the agent
mines the last block of wood. Further details are
provided in Appendix B.3.

Policies for Atomic Skills. We employ both
language-conditioned and video-conditioned poli-
cies to learn atomic skills from the segmented
demonstration videos as shown in Stage III
The video-conditioned policy is built upon
GROOT (Cai et al., 2023b), which utilizes self-
supervised learning to model instructions and
behaviors. In the original GROOT, a fixed-length
sequence of 128 frames serves as the instruc-
tion, which is encoded into a goal embedding
using a conditioned variational autoencoder (C-
VAE) (Kingma and Welling, 2014; Sohn et al.,
2015). The decoder then predicts actions based
on the instruction and environmental observa-
tions in an auto-regressive manner. The language-
conditioned policy is derived from STEVE-1 (Lif-
shitz et al., 2023), an instruction-tuned VPT
model capable of following open-ended texts
or 16-frame visual instructions. This model is
trained by first adapting the pretrained VPT
model to follow commands in MineCLIP’s (Fan
et al., 2022) latent space, and then training a
C-VAE model to predict latent codes from the
text. The original GROOT and STEVE-1 policies
divide the training trajectories into segments of
128 frames and uniformly sample between 15
and 200 frames, respectively. We re-train these
models using our SBD method on the segmented
trajectories and compare the results to the orig-
inal models to demonstrate the effectiveness of
our approach. We retain the minimum and maxi-
mum length settings. The algorithm for pruning
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Method € @« . | @ 7 ® 4 ® ® ® a rex
VPT  original 11.0% 29.0% 0.0% 22.0% 7.0% 23.0% 77.0% 14.0% 73.0% 33.0% 30.0% 38.0%
original 21.0% 26.0% 100.0% 97.0% 71.0% 30.0% 21.7 34.0% 76.0% 19.0% 14.5 9.5
GROOT  ours 30.0% 54.0% 100.0% 88.0% 93.0% 80.0% 26.8 51.0% 90.0% 44.0% 19.7 25.4
A +42.9% +107.7% 0 -9.3% +30.1% +166.7% +23.3% +50.0% +18.4% +131.6% +36.1% +166.3% +63.7%
original  0.0% 1.0% 33.3% 33.3% 18.8% 65.6%  96.9% 18.8% 80.2% 57.3% 44.8% 46.9%
STEVE-1 ours 0.0% 3.1% 40.6% 77.1% 42.7% 71.9% 96.9% 47.9% 84.4% 67.7% 43.8% 71.9%
A 0 - +21.9% +131.3% +127.8% +9.5% 0 +155.6% +5.2% +18.2% -2.3% +53.3% +52.1%

Table 2 | Success rate of different policies on Minecraft skill benchmarks. For VPT (Baker et al., 2022), we
report the results of the behavioral cloning version. For GROOT (Cai et al., 2023b) and STEVE-1 (Lifshitz et al.,
2023), we report the results of original and our re-trained with SBD, respectively. A value with % indicates
the average success rate, while a value without % indicates the average rewards. The seeds for the Minecraft
environment are fixed for the corresponding task to make a fair comparison between different models. Details

of the tasks are provided in Appendix B.1.

the length of each trajectory is detailed in B.4.
Most of the original hyperparameter settings are
retained as specified in the original papers. A
complete list of modified hyperparameters is pro-
vided in Appendix B.2.

Long-term Instruction Following. We use the
hierarchical agents to model the long trajectories,
which are widely used by (Driess et al., 2023;
Wang et al., 2023b, 2025). We utilize in-context
learning, as demonstrated by JARVIS-1 (Wang
et al., 2024b), and imitation learning, as shown
by OmniJARVIS (Wang et al., 2025), to evaluate
the long-horizon instruction-following capabili-
ties of hierarchical agents. JARVIS-1 is a hierarchi-
cal agent that uses the text-conditioned STEVE-1
as its policy and pretrained vision-language mod-
els as planners. We replace the text-conditioned
policy with our re-trained STEVE-1 based on SBD.
OmniJARVIS is a vision-language action agent
built on FSQ-GROOT, which encodes instructions
into discrete tokens rather than continuous em-
beddings. It is trained on behavior trajectories
encoded into unified token sequences.

4. Experiments and Analysis

In our experiments, we answer the following ques-
tions:

e The short segments obtained through SBD
method, are they more consistent at the seman-
tic level, and can a better atomic skill policy be
trained on these segments?

e Does using short videos segmented with new
methods as skills perform better on long-horizon

tasks?
e Which component of SBD is the most impor-
tant?

4.1. Experimental Setups

Environmental Setups and Datasets. We take
the Minecraft environment (Guss et al., 2019;
Zheng et al., 2023) as the evaluation simulator.
Within the Minecraft environment, we use Ope-
nAl’s contractor dataset 7.x (early game) (Baker
et al., 2022) as trajectories. The dataset con-
tains offline trajectories with 68M frames with
a duration of approximately 1000 hours, with at
least half of the data from the first 30 minutes of
the game. Our method generates a segmented
dataset of 130k sub-trajectories using bc-early-
game-3x (Baker et al., 2022) as the pretrained
unconditional model.

Evaluation Benchmarks. For the atomic con-
ditioned policies, we selected basic skills such
as chop down trees and advanced skills like
smelt items with furnace in Minecraft as
evaluation benchmarks. We tested 12 different
skill sets designed in MCU (Lin et al., 2023). Each
task was tested over 100 times, except for sleep
in bed and use bow, which were evaluated
10 times using the human Elo rating. The eval-
uation metrics are computed with the success
rates and rewards. The hierarchical agents are
evaluated on long-horizon programmatic tasks
requiring the agents to start from an empty in-
ventory in a new world until obtaining the fi-
nal required items, such as obtain an iron
pickaxe from scratch, which is usually a
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Method Wood Food Stone Iron Average Method Wood Oak Birch Stone Iron Diamond Armor Food Average
original  95% 44% 82%  32% original 92%  89% 90%  90%  33% 8% 12% 39%
ours 96% 55% 90%  35% ours 97%  95%  94%  91%  35% 10% 19% 62%
A +1.1% +25.0% +9.8% +9.4% +11.3% A +5.4% +6.7% +4.4% +1.1% +6.1% +25.0% +58.3% +59.0% +20.8%

(@) OmniJARVIS (behavior cloning) (b) JARVIS-1 (in-context learning)

Table 3 | Success rate of two agents with their corresponding controllers trained on dataset segmented
by our SBD method and the original sequential sampling (SS) method on groups of long programmatic
tasks. All tasks are tested 30 times. In each group, the agent is required to obtain a certain type of items from
scratch or given an iron pickaxe. For example, the diamond group includes diamond pickaxe, diamond sword,

jukebox, etc.

@ € o | @ 7 @ 4 @ ® @ s e
- 21.0% 26.0% 100.0% 97.0% 71.0% 30.0% 21.7 34.0% 76.0% 19.0% 14.5 9.5 64.2
Info 33.0% 52.0% 100.0% 88.0% 97.0% 32.0% 23.7 65.0% 92.0% 47.0% 15.5 21.6 87.4
Loss 44.0% 54.0% 100.0% 94.0% 72.0% 46.0% 25.8 63.0% 95.0% 48.0% 17.9 22.7 91.8
Both 30.0% 54.0% 100.0% 88.0% 93.0% 80.0% 26.8 51.0% 90.0% 44.0% 19.7 25.4 93.3

Table 4 | Ablation on the components within SBD. We report the evaluation results on Minecraft atomic skills
from the sequential sampling (- in the table) and SBD with different components.

chain of atomic tasks. We split the long-horizon
tasks into different groups, including wooden
items, food, stones items, iron etc. For each
group, we choose the tasks from JARVIS-1 bench-
marks (Wang et al., 2024b) and evaluate each
task over 10 times.

4.2. Main Results

In this section, we present the results of our
method, SBD, applied to the two policies and two
agents mentioned earlier. SBD achieves an aver-
age performance increase of 63.7% for GROOT
and 52.1% for STEVE-1 compared to the original
methods. Additionally, it enhances the perfor-
mance of OmniJARVIS and JARVIS-1 by 11.3%
and 20.8%.

Short-horizon Atomic Tasks. The results are
shown in Table 2. Scores with % indicate suc-
cess rates, while those without % represent re-
wards for the corresponding tasks. The con-
trollers showed substantial improvements across
most tasks, with an average performance enhance-
ment of 63.7% for video-conditioned policy and
52.1% for language-conditioned policy.

Long-horizon Programmatic Tasks. To further
verify that the improvements in controllers en-
hance the ability of hierarchical agents, we evalu-
ate OmniJARVIS and JARVIS-1 on programmatic

tasks selected from the original papers (Wang
et al., 2024b, 2025). As shown in Table 3,
the agents have substantial improvements across
most of the tasks, achieving an average perfor-
mance enhancement of 11.3% for Omnijarvis and
20.8% for JARVIS-1.

4.3. Ablation Study

As introduced in Sections 3.2.1 and 3.2.2, the
environment information and the skill boundary
detection loss are important components for accu-
rate segmentation of long videos. In this section,
we explore the effectiveness of every component.
So we compare the full SBD with sequential sam-
pling (w/o loss and info), SBD w/ info only, and
SBD w/ loss only. To evaluate the effectiveness of
these configurations, we conducted an ablation
study on the performance of four methods un-
der GROOT. The results are presented in Table 4.
Our findings are as follows: (i) Using external
information alone significantly improves perfor-
mance, with an average increase of 36.1% over
the original agent. (ii) Using loss alone results in a
better performance (an average increase of 5.0%)
compared to using external information alone,
highlighting the effectiveness of the core com-
ponent of our method. This demonstrates that
our method achieves strong performance even
without external information. (iii) Combining
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Figure 2 | The length distribution of segments, split by info and loss. The info-only method is intrinsically
semantically meaningful, suggesting that the loss-only method also identifies a semantically meaningful
segmentation pattern. Furthermore, the similarity between the combined method and the loss-only method
indicates that predictive loss is the primary factor in learning the segmentation pattern.

Figure 3 | Video Segment Examples. Top: sleep in bed. Bottom: collect grass. Each segment
is accompanied by five screenshots. The first and last screenshots represent the initial and final frames of
the segment, respectively. The remaining three screenshots are manually selected to best illustrate the skill’s
progression. More segments can be found in Appendix C.

loss and external information yields the best over-
all performance. This combination outperforms
the individual components in half of the tasks,
suggesting that each component captures unique
segmentation patterns that the other misses.

We observe performance declines when em-
ploy both components in tasks smelt food and
collect seagrass. This may be due to both
components partitioning the trajectory at the
same intervals but not at identical steps, lead-
ing to redundant splits and incorrect trajectory
fragments.

4.4. Visualizations

Length Distribution. Fig. 2 shows the length
distribution of sub-trajectories split by different
methods with or without the two components of
SBD. We observe that both loss-only and info-only
methods follow similar distributions, where the
log length and frequency of sub-trajectories ex-

hibit a normal distribution. Since the info-only
method is intrinsically semantically meaningful,
this provides indirect evidence that the loss-only
method also identifies a semantically meaningful
segmentation pattern as the info-only method.
Furthermore, when combining loss with exter-
nal information, the distribution does not signif-
icantly differ from the loss-only method. This
observation highlights that the predictive loss is
the key driver in learning the segmentation pat-
tern, with the external information serving a more
supplementary role.

Skill Videos. We sample one long unsegmented
video segmented by our method for each skill
in the datasets, such as sleep in bed and
collect seagrass (see Fig. 3). More seg-
ments can be seen in Appendix C.
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5. Related Works

Learning from Unsegmented Demonstrations.
Prior work on learning from unsegmented demon-
strations has proposed various methods to seg-
ment trajectories into sub-trajectories. For in-
stance, some methods (Kipf et al., 2019; Shankar
and Gupta, 2020; Tanneberg et al., 2021) utilize
a variational autoencoder (Kingma and Welling,
2014) model to generate pairs of skill types
and durations, (g;, ti)l’F:l, from a given trajectory,
thereby enabling segmentation. TACO (Shiarlis
et al., 2018) adopts a weakly supervised frame-
work that identifies task boundaries, (t1,...tx)
based on task sketches, (g1, ...gk), by solving a
sequence alignment problem to achieve appro-
priate segmentation. BUDS (Zhu et al., 2022)
constructs hierarchical task structures of demon-
stration sequences using a bottom-up strategy,
deriving temporal segments through agglomera-
tive clustering of the actions. FAST (Pertsch et al.,
2025) proposes an approach based on byte-pair
encoding (Gage, 1994) algorithm for segmenta-
tion and tokenization of robot action trajectories
via time-series compression.

Option Learning. Option learning (Sutton et al.,
1999) is a framework designed to learn tempo-
ral abstractions (i.e., skills or primitives) directly
from the environment’s reward signal, primar-
ily through online reinforcement learning. Re-
cent approaches (Bacon et al., 2017; Bagaria and
Konidaris, 2019; Klissarov and Precup, 2021) rely
on policy gradient methods to learn the option
policies. This framework requires reward signals,
and DIAYN (Eysenbach et al., 2019) proposes a
method to generate a reward function adaptively
in the absence of reward signals, resulting in the
unsupervised emergence of diverse skills.

Event Segmentation Theory. In neuroscience,
episodic memory is the memory of everyday
events consisting of short slices of experi-
ence (Conway, 2009). Event Segmentation The-
ory (EST) (Zacks et al., 2007) offers a theoretical
perspective on how the neurocognitive system
splits a long flow of memory into short events.
According to EST, observers build event models
of the current situation to generate predictions
of future perceptual input. When errors in pre-

dictions arise, an event boundary is perceived,
causing the event model to be reset and rebuilt.
Our method employs a pretrained model to pre-
dict the agent’s action based on past observations
and uses the predictive loss as an indicator to
detect skill boundaries.

Agents in Minecraft. Many agents have been
developed to interact with Minecraft environ-
ments (Jiang et al., 2025; Zhao et al., 2024a).
For short-horizon tasks, methods typically em-
ploy imitation or reinforcement learning, as seen
in works like VPT (Baker et al., 2022), which an-
notated a large YouTube Minecraft video dataset
with actions and trained the first foundation
agent in the domain using behavior cloning, and
its derivatives (Cai et al., 2023a,b, 2024b; Lif-
shitz et al., 2023; Yuan et al., 2024). For long-
horizon, programmatic tasks, large language
models (LLMs) are used as planners combined
with skill policies (Li et al., 2024; Qin et al., 2024;
Wang et al., 2023b, 2024b; Yuan et al., 2023;
Zhou et al., 2024), and some methods (Wang
et al., 2024a,b; Zhu et al., 2023) employ explicit
memory mechanisms to further enhance the long-
horizon capabilities of LLM agents. Additionally,
recent advances (Wang et al., 2025; Zhao et al.,
2024b) have explored using end-to-end visual-
language models (VLMs) to directly follow hu-
man instructions. Finally, some research (Guo
et al., 2024; Zhang et al., 2023) focuses on open-
ended creative tasks such as building and deco-
ration, which often cannot be directly defined by
rule-based rewards.

6. Conclusions

In this paper, we propose a novel temporal video
segmentation algorithm to address the challenges
of open-world skill discovery from unsegmented
demonstrations. To generate a segmented dataset
of video clips with independent skills, our al-
gorithm detects the potential skill boundaries
based on the predictive loss of a pretrained action-
prediction model. External boundary indicators
can also be incorporated in our method. The
method does not require any manual annotations
and can be employed directly on massive internet
gameplay videos.
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7. Limitations and Future work

The current algorithm is relatively time-
consuming, requiring approximately 1 minute
of processing on an NVIDIA RTX 3090Ti for
every 5-minute video, due to the need to predict
actions and compute loss across the entire
trajectory. Since our method is label-free, it has
the potential to segment and train on a large
number of human trajectories on YouTube, which
is future work. Additionally, we observe that the
algorithm becomes unstable in action-intensive
scenarios (e.g., combat situations), often gener-
ating many short segments. Future work could
focus on improving the efficiency and stability
of the algorithm, as well as exploring more
effective evaluation methods. We also anticipate
the potential application of our method to larger
datasets and other open-world video games
beyond Minecraft.
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A. Proofs

In this section, we provide a detailed proof of Theorem 3.4, regarding the bounds of relative predictive
probability under scenarios of skill transition and non-transition. We prove the lower bound and
upper bound respectively in the following two subsections.

A.1. Proof of Upper Bound Under Skill Non-Transition

P(ag41]o1: K-1)c K-1)
p(—peloted) (K1) pip(g,foryn) > K1)
(ITiz1 P(ailo1:)) K K
K-1)

> P(P(e41 = Te|01:041) e (Ars1|01:041) > %) (Eq. (6))
> P(m(a101:041) > ©) (Assumption 3.1)
= P(me1(aes1]01:041) > )
>1-6 (Assumption 3.2)

A.2. Proof of Lower Bound Under Skill Transition

We first magnify the likelihood ratio between the next action and the average action history,

P(a+1l01:¢41) P(m1 = 7¢]01:041) e (Aee1]01:641) + P(Tes1 # 7[01:041) (Eq. (6))
(H§=1 P(ailolzi))l/t (H§=1 P(ai|01:i))1/t
< P(mrs1 = me]01:041) e (Ars1101:041) + P(Tes1 # 7|01:4) (Eq. (6) and

KT_l(Hle ﬂi—l(ai|01:i))1/t
Assumption 3.1)
Te(ars1]01:041) + %
EL(TT.; mioa (ailor:)) 1/t
_ K 7 (Ars1]01:041) 1
K =171 me(ailor) Ve (K = 1) [Ti; miailor:1)) Y/t
Km 1
< + - 7
2(K-1) (K-1) Hi:l mi(ailo1:i))

(Assumption 3.1)

(Assumption 3.3)

Therefore,
P(a+1/01:041) Km 1
p
((Hlt':l P(ajfo1:1)) 1/t S2(K-1) * c(K - 1))
Km 1 Km 1
> P( :

20K—1) (K= D) [1y miladorn e~ 2(K—1) (K- 1)

= P(l_[ mi(ailo1:)) Yt > ¢)
i=1

t
> np(ﬂ'i(ailolzi) > ¢)
i=1
>(1-8)>1-1t8 (Assumption 3.2)
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B. Experiment Details

In this section, we provide our experiment details including benchmark, training details for GROOT
and STEVE-1, how we use event-based information as external auxiliary information, and the length
pruning algorithm for sub-trajectories.

B.1. Tasks in the Early Game Benchmark

Minecraft SkillForge is a diverse benchmark of 30 short atomic tasks that can comprehensively evaluate
the mastery of atomic skills by agents in Minecraft. We choose 10 early game tasks from the original
benchmark which the original agent can already handle at a basic level because our method is an
improvement on dataset processing instead of a new model architecture, so it cannot help agents
learn new skills that they are completely incapable of acquiring previously. Besides, we add the task
"use torch", which is also a useful skill in Minecraft; and we add an enhanced version of the task
"collect wood", which requires the agent to start from the plains instead of the forest, aiming to test
its ability to explore and find trees.

Details of the 12 tasks in our early game benchmark are shown in Table 5. For each task, we include
the evaluation metric and a brief description of what the task is. For tasks "Sleep" and "Use bow",
GROOT performs very well on the original metric, so we design a manual metric that better assesses
its actual performance. STEVE-1 can take text as prompts, which are also listed in the table. For some
of the tasks, it is tricky to find proper text prompts, so we use visual prompts instead.

B.2. Training Details

The modified hyperparameters for GROOT and STEVE-1 are listed in Appendix B.2. We adjust parallel
GPUs, gradient accumulation batches, and batch sizes to better align with our available computing
resources. To speed up convergence without compromising performance, we double the learning
rate for GROOT. The total number of frames for STEVE-1 is also modified, as we change the training
dataset from a mixed subset of 8.x (house building from scratch), 9.x (house building from random
materials), and 10.x (obtaining a diamond pickaxe) to the full 7.x dataset (early game), which better
suits our benchmark tasks. !

All models are trained parallelly on four NVIDIA RTX 4090Ti GPUs. We follow the same policy
training pipeline as the original paper except for the modified hyperparameters mentioned above.
GROOT is trained under three epochs of our dataset. STEVE-1, however, is only trained under 1.5
epochs of our dataset, because we observe that the model starts to overfit on the dataset if it is trained
further.

B.3. Event-Based Information

n.n

Within the Minecraft environment, we focus on events in the categories "use item", "mine block",
"craft item", and "kill entity", as they reflect the player’s primary activities. Multiple events may
occur simultaneously and are recorded as a set. Only the final step of a repeating sequence of event

nmn

sets is marked as positive. For example, in the sequence: ("use item iron pickaxe", "mine block iron
ore"), ("use item iron pickaxe", "mine block iron ore"), ("use item iron pickaxe", "mine block diamond
ore"), ("use item torch"), ("use item torch"), the second, third, fifth steps will be marked as positive.

Additionally, for any step t that includes a "kill entity" event, we mark t + 16 as positive instead of ¢,

1OpenAI released five subsets of contractor data: 6.x, 7.X, 8.%, 9.x, and 10.x.
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Metric

Description

Text Prompt
for STEVE-1

Craft item cooked mutton

Given a furnace and some
mutton and coal, craft a
cooked mutton.

Kill entity sheep

Summon some sheep before
the agent, hunt the sheep.

STEVE-1: Use item white bed.
GROOT: Sleep in bed properly.

Given a white bed, sleep on it.

Sleep in bed.

Use item torch

Give some torches, use them
to light up an area. Time is set
at night.

Use a torch to
light up an
area.

Use item birch boat

Given a birch boat, use it to
travel on water. Biome is
ocean.

STEVE-1: Use item bow.
GROOT: Use item bow 20%,
Shoot in distance 40%, take

aim 40%

Given a bow and some arrows,
shoot the sheep summoned
before the agent.

Mine block stone (cobblestone,
iron, coal, diamond)

Given an iron pickaxe, collect
stone starting from cave. Night
vision is enabled.

Collect stone.

Mine block seagrass (tall
seagrass, kelp)

Given an iron pickaxe, collect
seagrass starting from ocean.

Mine block oak (spruce, birch,

Given an iron pickaxe, collect

jungle, acacia) log wood starting from forest. Chop a tree.
: . Given an iron pickaxe, find
Mine block oak (spruce, birch, and collect wood starting from  Chop a tree.

jungle, acacia) log

plains.

Mine block dirt (grass block)

Given an iron pickaxe, collect
dirt starting from plains.

Collect dirt.

0400 N §- 4@ ¢

Mine block grass (tall grass)

Given an iron pickaxe, collect
grass starting from plains.

Collect grass.

Table 5 | Details of 12 atomic tasks in our early game benchmark for testing GROOT and STEVE-1.

Hyperparameter Value
Learning Rate 0.00004
Parallel GPUs 4

Accumulate Gradient Batches 1
Batch Size 8

Hyperparameter Value
Parallel GPUs 4
Accumulate Gradient Batches 4
Batch Size 4
n_frames 100M

Table 6 | Modified hyperparameters for training controllers. (Left) GROOT. (Right) STEVE-1.

because there will be a short death animation that follows the entity’s death and we want it to be
included in the same segment.
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B.4. Length Pruning Algorithm

STEVE-1 forces a minimum and maximum length of trajectories in its method so we need a length
pruning algorithm. In our implementation, the length of each trajectory is pruned as follows: If a
trajectory is too short, it is merged with subsequent trajectories until it meets the minimum length
requirement. If this results in a trajectory exceeding the maximum length, it is truncated, and the
remainder forms the beginning of the next trajectory. For instance, given a minimum and maximum
length of 15 and 200, sub-trajectories of lengths 12, 12, 6, 196, and 37 are adjusted to 24, 200, and
39. Here, the first two sub-trajectories are merged, while the 6 is combined with 196 but truncated
at 200, with the remaining 2 merged into the next trajectory. There might be more sophisticated
strategies, but we use this straightforward algorithm for simplicity.

C. Examples of Skill Videos

We sample one video segmented by our method for each skill in the benchmark, presenting each
video with five screenshots. The first and last screenshots correspond to the first and last frames of
the video, while the other three are manually selected to best illustrate the progression of the skill.

¢ smelt food

* sleep

¢ use torch

¢ use boat

e use bow
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collect seagrass

collect wood
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