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Recently, action-based decision-making in open-world environments has gained significant attention.
Visual Language Action (VLA) models, pretrained on large-scale web datasets, have shown promise in
decision-making tasks. However, previous work has primarily focused on action post-training, often
neglecting enhancements to the foundational model itself. In response, we introduce a novel approach,
Act from Visual Language Post-Training, which refines Visual Language Models (VLMs) through visual
and linguistic guidance in a self-supervised manner. This enhancement improves the models’ capabilities
in world knowledge, visual recognition, and spatial grounding in open-world environments. Following
the above post-training paradigms, we obtain the first VLA models in Minecraft that can follow human
instructions on over 1k different atomic tasks, including crafting, smelting, cooking, mining, and killing.
Our experiments demonstrate that post-training on non-trajectory tasks leads to a significant 40%
improvement over the best agent baseline on a diverse set of atomic tasks. Furthermore, we demonstrate
that our approach surpasses traditional imitation learning-based policies in Minecraft, achieving state-
of-the-art performance. We have open-sourced the code, models, and datasets to foster further research.
The project page can be found in https://craftjarvis.github.io/JarvisVLA.

1. Introduction

Pretraining foundation models on large-scale,
noisy internet datasets has become a mainstream
approach in NLP and vision (Achiam et al., 2023;
Dosovitskiy, 2020; Team et al., 2023; Wang et al.,
2024b). The success of models like GPT and
LLAMA (OpenAI, 2023; Touvron et al., 2023)
has shown that large, capable language models
can infer and execute tasks described by lan-
guage prompts. However, this paradigm has yet
to achieve similar success in the decision-making
domain (Cheng et al., 2024; Yang et al., 2023).
In particular, while OpenAI’s Video Pre-Training
(VPT) model (Baker et al., 2022) has attempted
to apply a similar approach in Minecraft, it still
relies heavily on imitation learning (IL) after
collecting large-scale YouTube videos of human
play. VPT’s approach of pretraining with imita-
tion learning, followed by downstream supervised
fine-tuning and reinforcement learning, made
significant strides—culminating in the successful

ObtainDiamond, a key challenge in Minecraft1.

Despite this success, the reliance on next-action
prediction in imitation learning limits the develop-
ment of robust, multi-task decision-making abil-
ities (Brohan et al., 2022; O’Neill et al., 2023;
Team et al., 2024; Wu et al., 2023). Moreover,
this pretraining paradigm struggles to generalize
to unseen environments or tasks due to the intrica-
cies of the interactions between observations and
behavior, whereas language tokens are more stan-
dardized. To overcome these challenges, a new
approach has emerged that leverages pretrained
Vision Language Models (VLMs) for decision-
making. These models, known as Vision Lan-
guage Action models (VLAs), integrate language
understanding with action generation and can
be further enhanced through post-training on
visual-language tasks (Kim et al., 2024; Zhen
et al., 2024). A more detailed discussion can
be found in Figure 1 (left) and subsection 2.2.

1Diamond tools are considered a grand challenge, with
experienced human players taking up to 20 minutes (24,000
actions) to craft them.
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Figure 1 | We present JARVIS-VLA, a novel Vision-Language-Action (VLA) model trained with ActVLP paradigm,
post-trained on vision language tasks (non-decision-making tasks) before training on trajectory datasets to
have better decision-making capabilities.

However, much like traditional imitation learn-
ing, current VLA approaches predominantly fo-
cus on action post-training. In these models, the
learning objective is to generate correct actions
based on large-scale cross-task imitation data.
We propose that, in addition to action genera-
tion, understanding the environment and incor-
porating task-related knowledge could be equally
important for achieving more flexible and gener-
alizable decision-making. To this end, we intro-
duce a novel training paradigm—Vision Language
Post-Training (ActVLP)—which integrates visual-
language tasks into the post-training phase of
VLA models. Following the above paradigms, we
obtain the first VLA models in Minecraft that can
follow human instructions on over 1k different
atomic tasks, including crafting, smelting, cook-
ing, mining, and killing.

Our contributions are as follows: (1) We pio-
neer the use of VLA in the open-world environ-
ment of Minecraft by introducing JARVIS-VLA, a
powerful model achieving state-of-the-art perfor-
mance in action-based decision-making. (2) We
introduce the concept of Vision Language Post-
Training and identify key visual-language guid-
ance strategies that enhance decision-making.

(3) We investigate the scaling laws of VLA mod-
els, demonstrating that expanding the scale of
non-trajectory vision-language tasks during post-
training leads to significant improvements in
downstream task performance. (4) We open-
source the code, models, and datasets to support
further research in this area.

2. Learning to Act from Vision Lan-
guage Post-Training

In this section, we present a detailed introduction
to ActVLP, a new paradigm for training VLA mod-
els. One of the most significant improvements
is that we investigate a post-training stage prior
to imitation learning. Specifically, we instantiate
this paradigm in our proposed model, JARVIS-
VLA. We begin by discussing the architecture for
JARVIS-VLA in subsection 2.1, followed by an
explanation of the training pipeline in subsec-
tion 2.2 and the datasets used in subsection 2.3.

2.1. Model Structure

As illustrated in Figure 1, JARVIS-VLA employs an
architecture similar to Llava (Li et al., 2024a) but
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Figure 2 | Previous VLA methods usually directly use imitation learning to finetune original vision-language
models on large-scale multi-domain decision-making datasets to predict the actions (Brohan et al., 2023; Kim
et al., 2024). Our ActVLP training pipeline includes three stages: 1) post-training language models on text-only
world knowledge with next-token prediction supervised fine-tuning, 2) post-training both vision encoder and
language models on multimodal vision-language alignment and spatial grounding datasets with next-token
prediction supervised fine-tuning, and 3) post-training only language models on multi-modal instruction
following datasets with imitation learning.

with slight modifications. The structural frame-
work, consists of several key components:: 1)
Visual Encoder: A Vision Transformer (Doso-
vitskiy, 2020) that processes raw image pixels
and converts them into a sequence of fixed-size
image patches. 2) Image Projection Module:
A lightweight two-layer MLP that projects im-
age patch embeddings into the same representa-
tional space as word embeddings. 3) Language
Model Transformers (Bai et al., 2023; Touvron
et al., 2023): A powerful autoregressive lan-
guage model that serves as the core of the system,
facilitating multimodal reasoning and decision-
making.

Unlike OpenVLA (Kim et al., 2024), our frame-
work is designed for partially observable environ-
ments. To accommodate this, we adopt a non-
Markovian architecture by incorporating a history
of observation images within the prompt. This ap-
proach ensures that the model retains temporal
context, which is crucial for tasks requiring multi-
step reasoning and long-horizon decision-making.
In our experiments, we employ Llava-Next (Li
et al., 2024a) and Qwen2-VL (Wang et al., 2024b)
as base vision language models, as both models
provide robust support for multi-image reasoning,
enabling enhanced perception and contextual un-
derstanding.

Another key distinguishing feature of JARVIS-

VLA compared to prior VLA models is the integra-
tion of an action decoder. This module is respon-
sible for generating both discrete and continuous
actions. For discrete actions, we consolidate re-
lated action dimensions into unified categories to
reduce redundancy and improve efficiency. For
continuous actions, we discretize the action space
into bins, which are then mapped to discrete to-
kens. These tokens are subsequently appended to
the vocabulary of the original foundation model,
allowing the model to generate both textual and
action-based outputs in a unified manner.

Instead of retraining the base VLM’s tokenizer,
we adopt a strategy inspired by RT-2 (Brohan
et al., 2023), repurposing the least frequently
used tokens from the language tokenizer’s vocab-
ulary to represent action semantics. Specifically,
we replace the 51 least-used tokens, allocating
22 tokens for mouse control (e.g., cursor move-
ments) and 29 tokens for special keyboard in-
puts (e.g., function keys and command shortcuts),
which can be found in Appendix A. We intro-
duce no other modifications to the original VLM
architecture to maintain model generalizability
and ensure broad compatibility across different
foundation models. This design choice allows
JARVIS-VLA to be easily integrated with various
pre-trained multimodal models while preserving
their inherent capabilities.
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Figure 3 | Illustration of various post-training datasets. Models can post-train on various vision-language
datasets using a unified tokenizer and support diverse vision-language applications, such as question answering,
image captioning, image/video question answering, visual grounding (including points and bounding box),
and decision-making. More examples can be found in Appendix D.

2.2. Training Pipeline

Traditional VLA methods typically employ pre-
trained VLMs and train them via imitation learn-
ing on large-scale trajectory data, which includes
textual instructions, visual observations, and
action token sequences, as illustrated in Fig-
ure 2(left). These methods assume that VLMs,
pretrained on diverse internet-scale data, possess
strong generalization and fitting capabilities. Con-
sequently, they are fine-tuned directly on down-
stream decision-making tasks, leveraging multi-
scenario data to enhance action understanding
and generalization.

However, learning world knowledge from
action-labeled trajectory data is inherently chal-
lenging (Baker et al., 2022). Moreover, the lack of
large-scale action-labeled datasets makes it chal-
lenging to pretrain expansive models using only
trajectory data (O’Neill et al., 2023).

To address these challenges, ActVLP enhances
the VLM through a structured post-training pro-
cess, utilizing data that follows the same format
as pretraining but is more relevant to decision-
making tasks. As shown in Figure 2(right), our
training pipeline consists of three stages.

Stage I: Post-Training Language Models. We
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first refine the language transformer of the VLM
using large-scale textual datasets related to world
knowledge in downstream environments, e.g.,
Minecraft. During this stage, vision-related com-
ponents, including the ViT and vision adapter
modules, are frozen. This step enhances the
model’s understanding of decision-making con-
texts before incorporating multimodal alignment.

Stage II: Post-Training Vision Encoder and Lan-
guage Models. Following language post-training,
we fully unfreeze the VLM and fine-tune it using
captioning, visual question-answering (VQA), and
spatial grounding datasets, which are multimodal
and have images in datasets. This stage ensures
improved vision-language alignment, enhancing
the model’s capacity to integrate world knowl-
edge with visual perception. Both Stage 1 and
Stage 2 employ next-token prediction through
supervised fine-tuning, with the optimization ob-
jective being:

LSFT = −
∑︁
𝑖=1

logP𝜃(𝑥𝑖 | 𝑥𝑣, 𝑥ins, 𝑥1:𝑖−1) (1)

where 𝑥𝑣 denotes visual tokens, 𝑥ins represents
the instruction, and 𝑥 corresponds to the answer.
This loss function maintains consistency with the
standard causal mask training approach.

Stage III: Imitation Learning on Trajectories.
In the final stage, we fine-tune the VLMs on tra-
jectory data, requiring the model to mimic ex-
pert actions given textual instructions 𝑥ins and
the current observation image 𝑜𝑡 ∈ ℝ𝐻×𝑊×3. The
imitation learning objective is defined as:

LIL = −
∑︁
𝑡=1

log𝜋𝜃(𝑎𝑡:𝑡+𝜏 | 𝑜𝑡, 𝑥ins) (2)

where 𝜋 represents the learned policy, and 𝑎𝑡:𝑡+𝜏
denotes the future action chunk predicted from
the current step. During this phase, vision-related
modules remain frozen, while the language tok-
enizer is modified to incorporate action tokens,
and the language transformer undergoes full-
parameter fine-tuning. Additionally, we adopt
action chunking to further enhance training effi-
ciency and optimize trajectory learning (Chi et al.,
2023).

This structured pipeline ensures that the VLM
is progressively refined before being adapted to

trajectory-based imitation learning, resulting in
improved world knowledge acquisition, vision-
language alignment and grounding, and action
generalization in decision-making tasks.

2.3. Datasets

To support the ActVLP training pipeline, we
constructed a large-scale multimodal dataset.
This dataset includes both non-trajectory task
datasets for post-training and trajectory datasets
for downstream imitation learning. The non-
trajectory datasets are divided into three cate-
gories: knowledge-based question answering, vi-
sion language alignment, and spatial grounding.
These categories are designed to enhance the
model’s decision-making capabilities before tra-
jectory fine-tuning. For trajectory datasets, we
collected over 7.4 million frames of Minecraft
gameplay data, including expert actions from di-
verse sources such as human-playing (Baker et al.,
2022), youtube videos, and existing agents (Wang
et al., 2024c).

The dataset for world knowledge comprehension
comprises approximately 277K entries that signif-
icantly bolster textual understanding, employed
during training stage I. The visual-language align-
ment dataset incorporates 35K keyframes en-
hanced with advanced Vision-Language Models
to produce both captions and question-answer
pairs, facilitating multimodal supervised fine-
tuning in the subsequent training stage. The
spatial grounding dataset focuses on detailed
object localization, generating over 404K data
points that are instrumental in refining spatial
understanding for ActVLP models. Both the
visual-language alignment datasets and the spa-
tial grounding datasets primarily utilize Minecraft
observations, which strengthen the VLM’s under-
standing of the world and are used to support
training stage II.

Imitation Learning Trajectory Dataset. VLA
training is constructed on a dataset of human
gameplay trajectories, particularly from the Ope-
nAI contractor dataset in Minecraft (Baker et al.,
2022), which includes diverse tasks. We also in-
corporated an additional 3M rollout frames from
VPT (Baker et al., 2022) and JARVIS-1 (Wang

5



JARVIS-VLA: Post-Training Large-Scale Vision Language Models to Play Visual Games with Keyboards and Mouse

et al., 2024c) agents. For structured GUI-based
tasks like crafting and smelting, we synthesized
6.4M expert data entries to improve imitation
learning. Representative examples of our datasets
are shown in Figure 3, with further details in Ap-
pendix D.

3. Experiments

Our experiments (starting from subsection 4.2)
aim to address the following questions:

Q1: How do JARVIS-VLA compare to sota open-
world agents and imitation learning methods?

Q2: Is vision language post-training the true
cause of the performance improvement?

Q3: Whether VLAs exhibit scaling laws and how
ActVLP influences them?

Q4: Is ActVLP sensitive to different VLM back-
bones? Due to space constraints, we quickly re-
spondwith an affirmative no, detailed experiment
discussion deferred to Appendix F.

3.1. Experimental Setup

Evaluation Environment. We use Minecraft
1.16.5 as our experimental platform (Guss et al.,
2019). As an open-world game with a substantial
knowledge base on platforms such as Reddit and
wiki (Fan et al., 2022), Minecraft poses signifi-
cant challenges to agents while simultaneously
offering rich resources for research. To ensure fair
comparisons, we align the action and visual obser-
vation spaces with those of human players (Baker
et al., 2022). Additionally, we hide information
unavailable to human players as well, such as
agent location and inventory stats.

Benchmark and Evaluation Metrics. We con-
duct evaluations using two broad benchmarks: (i)
the agent’s capacity to interact with the Minecraft
environment to complete tasks; and (ii) vision-
language tasks (e.g., question answering, spatial
grounding) designed to assess the VLM’s under-
standing of Minecraft-specific knowledge. For the
instruction-following tasks, we adopt the MCU
Benchmark (Lin et al., 2023), focusing on four
categories—Mine Blocks, Kill Entities,

Craft Items, and Smelt Items—that repre-
sent a wide range of typical game-play behaviors
in Minecraft. Notably, Craft and Smelt require
2D GUI manipulation through the mouse (cover-
ing thousands of item categories), whereas Mine
and Kill involve recognizing, navigating, and in-
teracting with targets in a 3D environment. Each
category contains at least 5 distinct tasks. For
instance, the Mine Blocks category includes
mining iron ore with a stone pickaxe, oak logs

with bare hands, grass , dirt , and obsidian
with a diamond pickaxe. Our evaluation set

includes both simpler tasks (e.g., mining oak logs)
and more complex ones (e.g., mining obsidian for
over 10 seconds) that have proven challenging
for prior state-of-the-art agents (Cai et al., 2024c;
Lifshitz et al., 2024). We perform each task at
least 30 times and report the success rate per task,
as well as the average success rate within each
category. To ensure fairness, maximum execu-
tion steps for selected tasks match those reported
by Lin et al. (2023). For vision-language assess-
ments, the task formulations are illustrated in Fig-
ure 3. We provide human-written ground-truth
answers and employ an LLM-as-judge to evaluate
the performance of various VLMs (GPT-4o, Llava,
Qwen-VL, and our post-trained VLMs). Detailed
information on these vision-language benchmarks
and results can be found in Appendix E.

Training and VLA Configurations.. Our train-
ing pipeline follows the process described in sub-
section 2.2: we first obtain a visual-language
post-training intermediate model, then further
train it on trajectory tasks to produce the JARVIS-
VLA. We conduct experiments using two popular
frameworks: Qwen2-VL (Wang et al., 2024b) and
Llava (Li et al., 2024a). We develop a discretized
action tokenizer specific to Minecraft, compris-
ing 51 tokens that represent camera movements
and button actions. We utilize the trl SFT
Trainer (von Werra et al., 2020) for finetuning
and deploy the VLA with vLLM (Kwon et al.,
2023). Training is carried out on 32 A800-80G
GPUs, while inference runs on a single NVIDIA
RTX 3090. Further training details are provided
in Appendix B.

Baselines. We compare our model with: 1)
VPT (Baker et al., 2022), including both the be-
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havior cloning (VPT-BC) and reinforcement learn-
ing (VPT-RL) variants; 2) STEVE-1(Lifshitz et al.,
2024), a text-conditioned policy that combines
VPT and MineCLIP(Fan et al., 2022) for instruc-
tion following; 3) GROOT (Cai et al., 2024c),
which uses video prompts as task instructions;
and 4) MineDreamer (Zhou et al., 2024), which
leverages a vision-language model and a diffusion
model to guide the STEVE-1 policy. Each method
follows the default configuration provided in the
MCU benchmark for a fair comparison.

3.2. VLA Performance Evaluation

We present the performance results of our pro-
posed model across four categories from the MCU
benchmark (Lin et al., 2023), as shown in Ta-
ble 1. For each MCU task, we collect over 100
random trajectories, which are used to fine-tune
base VLMs to create our final VLA models.

We evaluate three variants of the VLMs as base
models: 1) Qwen2-VL (raw): the original VLM
checkpoint fine-tuned for downstream tasks. 2)
Qwen2-VL (IL): post-trained on large-scale cross-
task trajectories (distinct from downstream tasks)
using imitation learning. 3) JARVIS-VLA-Qwen2:
post-trained on our proposed off-trajectory vision-
language tasks. Performance is measured by the
average success rate across tasks within each cat-
egory. Our results show that JARVIS-VLA-Qwen2-
VL, post-trained using our approach, consistently
outperforms prior methods across almost all tasks.

Remarkably, even without task-specific post-
training, raw Qwen2-VL model, fine-tuned on
downstream tasks, outperforms several previ-
ous baselines, including STEVE-1 (Lifshitz et al.,
2024) and GROOT (Cai et al., 2024c), which
were trained using large-scale imitation learning.
This highlights the effectiveness of using a robust
pre-trained VLM as the base model for the pol-
icy, leading to strong performance even without
additional fine-tuning.

Notably, we observe a significant performance
boost with ActVLP post-training. For tasks such as
Craft Items and Smelt Items, where pre-
vious methods struggled, JARVIS-VLA-Qwen2-VL
achieves success rates more than double those of
the baseline models. This underscores the effec-

tiveness of our off-trajectory vision-language task
strategy. Furthermore, JARVIS-VLA-Qwen2-VL
outperforms Qwen2-VL (IL) by over 15%, despite
using only 21% of the training trajectory data. In
crafting category tasks, the JARVIS-VLA model
surpasses traditional baselines by more than dou-
ble, outperforming models like VPT-BC (Baker
et al., 2022) and STEVE-1 (Lifshitz et al., 2024)
on tasks such as "Craft crafting table" ( ). This
significant improvement is primarily due to the
use of ViT in VLM and high-resolution processing,
which are crucial for tasks like crafting and smelt-
ing that demand precise control in the GUI inter-
face. This suggests that integrating off-trajectory
vision-language tasks into the training pipeline
enhances decision-making capabilities, enabling
more accurate action predictions in VLA models.
Further analysis and additional experiments will
be presented in the next section.

3.3. Ablation on Non-Trajectory Datasets

In this section, we focus on the post-training of
Qwen2-VL using various non-trajectory vision-
language tasks to investigate the specific contri-
butions to its enhanced performance.

To understand the impact of different task en-
hancements, we conduct an ablation study by
dividing the non-trajectory datasets and training
Qwen2-VL separately on three types of tasks: spa-
tial grounding, vision language alignment, and
knowledge-based question-answering, which are
all related to Minecraft games. This results in
three variants of the VLM, each augmented with
one of these capabilities—spatial grounding, vi-
sual recognition, and world knowledge. All mod-
els are finetuned using the same gameplay dataset
and imitation learning techniques. We also de-
velop a benchmark, detailed in Appendix E, to
evaluate these capabilities. For this evaluation,
we select three long-sequence atomic tasks: "Craft
the diamond sword" ( ), "Mine the obsidian"
( ), and "Cook the beef" ( ), as downstream
instruction-following tasks.

The results of our ablation studies, presented in
Figure 4, demonstrate that post-training with non-
trajectory vision-language tasks significantly en-
hances the core capabilities of the VLM across the
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Model Model Size Mine Blocks Kill Entities Craft Items Smelt Items

Avg. Avg. Avg. Avg.

VPT-BC (Baker et al., 2022) 248M 0.15 0.38 0.33 0.55 0.35 0.44 0.30 0.50 0.45 0.41 0.10 0.00 0.05
VPT-RL (Baker et al., 2022) 248M 0.05 0.35 0.25 0.35 0.25 0.28 0.50 0.30 0.62 0.55 0.05 0.35 0.20
STEVE-1 (Lifshitz et al., 2024) 248M 0.20 0.35 0.54 0.30 0.75 0.38 0.45 0.20 0.70 0.57 0.25 0.40 0.33
GROOT (Cai et al., 2024c) 248M 0.56 0.40 0.67 0.50 0.50 0.52 0.45 0.35 0.25 0.40 0.35 0.25 0.30
MineDreamer (Zhou et al., 2024) 7B 0.25 0.40 0.55 0.30 0.70 0.39 0.50 0.25 0.30 0.42 0.30 0.30 0.30

Qwen2-VL (orig) 7B 0.77 0.60 0.79 0.93 0.80 0.84 0.83 0.53 0.40 0.60 0.03 0.10 0.07
Qwen2-VL (IL) 7B 0.70 0.73 0.75 0.97 0.83 0.86 0.73 0.67 0.50 0.65 0.17 0.37 0.29
JARVIS-VLA-Qwen2 7B 0.80 0.95 0.88 0.97 0.93 0.95 0.87 0.83 0.63 0.77 0.77 0.70 0.70

Table 1 | Evaluation results of different policies on Minecraft tasks, Each group includes multiple tasks (at
least 5), and the Avg. column reports the average success rate within each group. Qwen2-VL, Qwen2-VL (IL)
and JARVIS-VLA-Qwen2-VL represent the training on the original qwen checkpoint, post-training on only
large-scale imitation learning trajectories, and post-trained on VLP intermediate model. Qwen2-VL (ActVLP)
achieves the highest success rates across all task groups.

Figure 4 | Ablation results on different post-training datasets. We select knowledge datasets, visual question-
answering datasets, and spatial grounding datasets to conduct ablation experiments. Our goal is to evaluate
which capabilities and post-training datasets most significantly influence downstream decision-making tasks.

respective benchmarks. Notably, after fine-tuning,
models enhanced with spatial grounding exhibit
the most substantial improvement in downstream
decision-making tasks. These findings underscore
the effectiveness of non-trajectory post-training
in boosting the performance of Vision-Language-
Action models in decision-making tasks, even
when the focus is on a single task. We find that
non-trajectory vision-language tasks, which are
essential for agent pipelines (Wang et al., 2023,
2024c), are more effective for fine-tuning end-
to-end VLA models. This demonstrates the con-
nection between developing LLM-based agent
pipelines with separate modules and fine-tuning
end-to-end VLA models.

3.4. Scaling Experiments

Recent work on large language models (LLMs)
trained on vast amounts of text via next-token pre-
diction has shown strong scaling laws (Du et al.,

2024; Lin et al., 2024; Wang et al., 2024e; Wei
et al., 2022). We investigate whether VLAs, ob-
tained through post-training on VLMs, exhibit
similar scaling behavior. Specifically, we explore
two questions: Q1) Can scaling up downstream
imitation learning trajectories further improve
the VLA’s task success rate? Q2) Does increas-
ing the amount of non-trajectory vision-language
tasks used during post-training enhance task com-
pletion success?

The results for Q1 are shown in Figure 5. Using
the same base model, we observe that increasing
the number of downstream trajectories improves
the VLA model’s task success rate. However, since
the success rate is a discrete metric, we find that
tasks only show a non-zero success rate when the
evaluation loss is below 0.30. This indicates that
the dataset size for downstream fine-tuning must
be sufficiently large enough. Furthermore, we ob-
serve that different tasks require varying amounts
of downstream data to reduce the evaluation loss
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Figure 5 | The relation between downstream task success rate, training loss, and training steps. The
curve shows that scaling downstream finetuning trajectories can scale up the success rate when the loss is
lower than 0.22.

Figure 6 | The relationship between post-training
loss and downstream task success rates. Our
findings indicate that increasing the size of post-
training non-trajectory datasets can significantly en-
hance downstream task success rates, even with a
fixed number of fine-tuning trajectories.

below 0.30, which correlates with the length and
difficulty of the tasks.

The results for Q2 are illuminated in Figure 6.
We also explore the relationship between the eval-
uation loss during post-training on non-trajectory
vision-language tasks and task success rate in
downstream tasks. We use base models from dif-
ferent stages of post-training (with different eval
loss on post-training datasets), fine-tuning them
with the same downstream trajectory dataset.
The baseline represents post-training using im-
itation learning on cross-task trajectories. We
find that, for nearly all tasks, the success rate in
downstream tasks correlates linearly with eval-
uation loss in post-training, with the lowest loss
yielding the best results. Notably, models post-
trained with knowledge-based tasks exhibit the
best downstream performance for a given evalua-
tion loss. Models enhanced with spatial ground-
ing show the lowest evaluation loss and the high-
est task success rates. These findings demon-
strate scaling up off-trajectory vision language
datasets directly enhances downstream task per-
formance, which has been overlooked in previous
VLA works (Brohan et al., 2023; Kim et al., 2024).

4. Related Works

4.1. Visual-Language-Action Models

Imitation learning (IL) involves learning by mim-
icking expert interactions with the environment,
with the primary challenge being the collection
of high-quality expert demonstration datasets.
Numerous studies have sought to enhance tra-
ditional IL approaches (Brohan et al., 2022; Chi
et al., 2023; Team et al., 2024). A promising direc-
tion is the use of Visual-Language-Action (VLA)
models (Brohan et al., 2023; Kim et al., 2024;
Zhang et al., 2024; Zheng et al., 2024; Zhong
et al., 2025), which adopt end-to-end imitation
learning by fine-tuning VLMs. OpenVLA (Kim
et al., 2024) has demonstrated the importance of
selecting a capable VLM backbone, a conclusion
further reinforced by RoboVLM (Li et al., 2024b).
Similarly, Brohan et al. (2023) highlighted that
co-training with web-scale vision-language data
significantly improves the generalization of VLA
models. While previous works primarily focused
on optimizing the selection of VLMs, several re-
cent studies have begun to pay attention to the
comprehension capabilities of VLA models (Chen
et al., 2025; Zhang et al., 2025; Zhou et al., 2025;
Zhu et al., 2025). However, few have explicitly
focused on enhancing the VLM backbone itself
through visual-language post-training. Our work
addresses this gap by proposing targeted visual-
language post-training methods to enrich the ca-
pabilities of VLMs, thereby improving their per-
formance on downstream VLA tasks.

4.2. VLM-based Agents in Minecraft

Existing Minecraft agents based on VLMs typi-
cally adopt hierarchical architectures (Cai et al.,
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2023; Deng et al., 2025; Fan et al., 2022; Wang
et al., 2023; Zhao et al., 2024; Zhou et al., 2024).
Thesemethods leverage a VLM’s world knowledge
for planning via zero-shot or few-shot in-context
learning, without modifying the VLM parameters
during agent optimization (Li et al., 2024c; Wang
et al., 2024a, 2023, 2024c). STEVE-EYE (Zheng
et al., 2023) fine-tuned Llama language mod-
els (Touvron et al., 2023) using internet text
data, achieving improved planning over zero-shot
prompting. MineDreamer (Zhou et al., 2024) em-
ploys the instruction-following capability of VLMs
to predict future visual observations and generate
actions based on STEVE-1 (Lifshitz et al., 2024).
OmniJARVIS (Wang et al., 2024d) uses a behavior
tokenizer (Cai et al., 2024b,c) to model human
trajectories in Minecraft with pretrained VLMs.
While these approaches optimize VLMs, they still
rely on additional policies for action grounding.
In contrast, we propose a VLA-based agent model
that generates actions directly from textual in-
structions and visual inputs, eliminating the need
for extra grounding policies.

5. Conclusions

We present ActVLP, a novel training framework
for visual-language-action models that leverages
vision-language post-training to enhance decision-
making capabilities in dynamic environments.
Our experiments demonstrate that post-training
on non-trajectory tasks significantly enhances
foundation models’ ability to understand com-
plex environments, resulting in substantial im-
provements in downstream imitation learning on
trajectory data. The effectiveness of this model is
validated across multiple VLM architectures, pro-
viding strong evidence of its broad applicability
and potential for visual-language-action model
training, as exemplified by our state-of-the-art
model, JARVIS-VLA.

Limitations

Looking ahead, there are several avenues for im-
provement in future work. First, it is crucial to
enhance the inference throughput of JARVIS-VLA,
which is currently constrained by the large param-
eter size of the VLA based on VLM (Budzianowski

et al., 2024). We believe that future integration
with MoE (Fedus et al., 2022; Jacobs et al., 1991)
could further improve the model’s inference effi-
ciency, with the goal of achieving gameplay per-
formance levels exceeding 40Hz. Additionally,
there remains potential for further performance
gains. While JARVIS-VLA outperforms previous
Minecraft policies, it still falls short of the perfor-
mance demonstrated by top human players, who
achieve success rates above 90%.
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A. Observation and Action Space

We rely solely on visual images for observation, without any symbolic information, similar to
VPT (Baker et al., 2022). To closely resemble the actions of real human players, our action space
covers all possible player actions excluding the typing of arbitrary letters. For the keypress and
click actions, we allocate corresponding reserved tokens from outside the original VLM tokenizer
vocabulary. Regarding mouse movements, we largely follow the approach adopted by VPT (Baker
et al., 2022), applying the mu-law encoding method to discretize mouse X and Y actions separately
into 21 bins, totaling 42 discrete bins. These bins are similarly mapped to reserved tokens. It is worth
mentioning that although Qwen2-VL (Wang et al., 2024b) does not explicitly provide reserved tokens
like Llama3 (Meta, 2024), it is still feasible to achieve equivalent results by expanding the number of
special tokens, due to the fact that the size of the vocabulary is smaller than the dimension of the
word embeddings.

During inference, models generate actions in a token-by-token manner—first predicting the keybut-
tons to be pressed, followed by the camera Y and camera X values.

B. Training Configurations

The training configurations for both Visual-Language Post-Training and Action Post-Training are
largely consistent. All experiment were conducted on NVIDIA A800-SXM4-80GB GPUs, utilizing
CUDA version 12.1 and Hugging Face Transformers version 4.47.0. Both training stages utilized the
AdamW optimizer with 𝛽1 = 0.9, 𝛽2 = 0.95, weight decay were set to 0, and 𝜖 = 1 × 10−8. A cosine
learning rate schedule was adopted with the learning rate of 5×10−6 and a warmup of 200 steps. The
training used bfloat16 precision, a maximum gradient norm of 1.0, and a fixed random seed of 42.
To accelerate training, DeepSpeed with ZeRO-1 (Rasley et al., 2020)optimization was employed. For
Visual-Language Post-Training, the maximum token length was set to 3584, and we set a batch size
per device of 2 and a gradient accumulation of 4 . For Action Post-Training, the maximum token
length was set to 512, which allowed a batch size per device of 8 and a gradient accumulation of 1
step per update. Ensuring that the total batch size remained 256. Both stages were trained using 32
A800 GPUs, with the Visual-Language Post-Training phase running for 128 GPU hours and the Action
Post-Training phase running for 512 GPU hours.

To enhance generalization, distinct data augmentation strategies were adopted for different training
phases. In the Visual-Language Post-Training phase, modifications included adjustments to hue,
saturation, brightness, contrast, as well as random translation, rotation, slight scaling variations,
shearing, and occasional flipping. These adjustments extended to bounding box and pointing annota-
tions, with necessary masking of instruction-following prompts. In contrast, the Action Post-Training
phase focused on adjusting hue, saturation, brightness, contrast, and translation, applied only on
images.

C. Details of Inference

During inference, we require JARVIS-VLA to output in the following format which is as same as the
gameplay dataset:
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Example of JARVIS-VLA Interaction for One Turn of Iteration

Instruction: Craft a bread so I can use it.
Arrange the materials in the crafting grid according to the following pattern:
wheat | wheat | wheat
wheat | wheat | wheat
and get 1 bread.
Observation:

Action: <|action_begin|><|cam_w_13|><|cam_h_5|><|action_end|>

To accelerate inference, we utilized vllm (Kwon et al., 2023) to load JARVIS-VLA in bfloat16
precision on four A800 GPUs. The frames-per-second (FPS) reached 55.

Example of JARVIS-VLA Interaction for Multi Turn of Iteration

Instruction: Kill a zombie.

Instruction: craft a crafting table.

D. Datasets

In this section, we will introduce the collection methods and specific forms of the visual language
post-training datasets we used, including the world knowledge dataset, visual language alignment
dataset, and visual grounding dataset.

D.1. World Knowledge Dataset

We sourced content from Wikipedia and the DigMinecraft website, and generating 202K question
answering entries using the GPT-3.5-turbo model. The dataset have been adjusted to a uniform format.
To increase training efficiency, we randomly merged the original one-question-one-answer data to
organize multi-turn dialogue dataset with lengths of approximately 1500-2000 tokens each. Below is
the specific format of the world knowledge dataset.
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Example of World Knowledge Dataset

Question: "What are the different items that can be made using dark oak planks in Minecraft?"
Answer: "In Minecraft, you can use dark oak planks to craft various items and blocks. Here are some of the items
and blocks you can make with dark oak planks:
1. Dark Oak Wood Slabs: Used for flooring, roofs, and other building elements.
2. Dark Oak Wood Stairs: Ideal for creating inclined pathways or staircases.
3. Dark Oak Wood Fence: Useful for creating boundaries or enclosures around structures.
4. Dark Oak Wood Fence Gate: Allows for openings in your fences for easy access.
5. Dark Oak Wood Door: Adds entrances to your buildings.
6. Dark Oak Wood Trapdoor: Can serve as hidden entrances or functional hatches.
7. Dark Oak Wood Button: Can be placed on surfaces and used to activate various redstone mechanisms.
8. Dark Oak Wood Pressure Plate: Activates redstone contraptions when stepped on.
9. Dark Oak Wood Sign: Useful for displaying text and providing information in your world.
10. Dark Oak Wood Bed: Used to craft the frame of a bed, combined with wool blocks for a complete bed.
11. Dark Oak Wood Boat: Useful for water transportation.
12. Dark Oak Wood Chest: Can be used to craft storage chests.
13. Dark Oak Wood Bookshelf: Decorative and enhances enchantment tables.
14. Petrified Oak Slab: Made from dark oak logs submerged in water and then crafted into planks and slabs. These
items enhance functionality and aesthetics in your Minecraft builds."

Question: "How can players build and use automatic farms in Minecraft, and what are some efficient designs?"
Answer: "In Minecraft, automatic farms are structures designed to automatically harvest resources without
requiring constant player intervention. These farms can be extremely useful for gathering various resources
efficiently. Here, I’ll provide a general overview of how to build and use automatic farms, along with examples of
efficient designs for different types of farms:
1. Crop Farms: Automated crop farms are used to grow and harvest crops like wheat, carrots, potatoes, and more.
Efficient design: - Create a water-based system to hydrate the farmland. A water source in the middle with canals
leading to the farmland is a common approach. - Use a dispenser to plant seeds or crops onto the farmland. -
Attach a redstone clock to the dispenser to periodically activate it. - Collect the harvested items using hoppers and
chests.
2. Mob Farms: These farms are used to automatically collect drops from hostile mobs, such as zombies, skeletons,
and creepers. Efficient design: - Build a dark room where mobs will spawn naturally. Use trapdoors, pressure
plates, or a combination to restrict mob movement. - Use water currents to funnel mobs into a kill chamber. -
Create a killing mechanism using either lava blades, suffocation, or other methods. - Use water currents again to
collect drops and funnel them into hoppers for collection.
3. Animal Farms: Automated animal farms can help you gather resources from passive mobs like cows, pigs, and
chickens. Efficient design: - Create separate pens for each type of animal. - Use a breeding mechanism to maintain
a stable population. Dispensers with food (like wheat for cows) can automatically breed animals. - Include a
killing mechanism for excess animals, providing a steady supply of drops. - Use water currents and hoppers to
collect drops into chests.
4. Tree Farms: Automated tree farms allow you to grow and harvest trees without manual effort. Efficient design: -
Plant saplings in rows using dispensers and bone meal. - Use a mechanism to cut down the trees. This can be
achieved using flying machines or TNT-based contraptions. - Use water currents to collect the dropped wood and
saplings into hoppers and chests.
5. Fishing Farms: Automated fishing farms simulate fishing to gather loot and experience points. Efficient design: -
Build a platform with water sources, a fishing rod dispenser, and a mechanism to reel in the fishing rod. - Create a
hopper system to collect items caught from the fishing process.
Remember that the efficiency of these designs can vary depending on your Minecraft version and specific game
settings. Additionally, always consider ethical and environmental factors when designing and using automated
farms in your gameplay."

D.2. Vision Language Alignment Dataset

For the construction of Vision Language Alignment Dataset, we employed a multi-step approach to
gather and process data. Initially, we sourced images from a variety of online platforms, including
YouTube gameplay videos, contractor-provided screenshots (Baker et al., 2022), and other internet
resources. We carefully selected 35,000 keyframes from these sources based on criteria such as
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brightness and visual complexity to ensure the quality of the dataset. Subsequently, we utilized
advanced Vision-Language Models—such as GPT-4o (OpenAI, 2023), Claude 3.5 Sonnet (Anthropic,
2024), and Molmo (Deitke et al., 2024)—to generate contextual image question-answer pairs, critical
in creating a rich, semantically detailed dataset that bridges visual content and linguistic annotations.
To enhance the reliability of the generated data, we implemented a robust query-validation pipeline.
This pipeline employed Llama-3.1-72B (Dubey et al., 2024) to systematically filter out ambiguous
questions and validate the accuracy of the generated answers. Additionally, it included a validation
step to ensure that the question-answer pairs were relevant to the associated images. To further
diversify our dataset, we specifically allocated nearly half of the vision-question-answer pairs for
caption generation, employing the advanced capabilities of GPT-4o. Through the implementation
of our comprehensive pipeline, we successfully generated a Vision Language Alignment Dataset
comprising 15,000 captions and 20,000 visual question answering dataset.

Example of Vision Language Alignment Datasets

Question: "What tool is the player holding?"

Answer: "The player is holding a pickaxe with an enchantment glow, likely a diamond pickaxe due to its color."

Question: "How many hearts of health does the player have?""

Answer: "The player has 9 hearts of health visible, indicating they are missing 1 heart."

Question: "What type of block is being mined by the player?"

Answer: "The player is mining a stone block."

Question: "What color is the liquid at the top of the image?"

Answer: "The liquid at the top of the image is orange, indicating it is lava."

Question: "How many inventory slots does the player have in total (visible on the hotbar)?"

Answer: "The player has 9 inventory slots visible on the hotbar."

D.3. Visual Grounding dataset

For Visual Grounding Dataset, we adopted different collection methods for 3D environments and GUI
interactions within Minecraft.
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In 3D environment, we sample images from the contractor data. We initially identify objects that
are interacting with the player at a specific moment in the video. Then implementing Backward
Trajectory Relabeling (Cai et al., 2024a) by sam2 (Ravi et al., 2024) to accurately trace the positions
of objects up to 𝑡 frames backward, which tend to be in more random positions.

For 2D GUI interactions, we directly utilized inventory messages provided by Minecraft in rollouts
to determine the positions of items within the inventory. Given that each slot in the inventory has
a fixed position, we can directly ascertain the points of items. To enhance the randomness of the
data distribution, we performed cropping on the data to make the point distribution more uniformly
distributed.

In total, we have collected 404K point data from these efforts, mapping real-time entity and object
positions during scripted tasks effectively.

Example of Vision Grounding Datasets

Question: "Show the location of torch in the provided image by outlining it with a bbox."

Answer: "<|object_ref_start|>torch<|object_ref_end|><|bbox_start|>(453,333),(563,528)<|bbox_end|>"

Question: "Illustrate the precise position of the iron boots in this image, returning the location in points."

Answer: "<|object_ref_start|>iron boots<|object_ref_end|><|point_start|>(356,446),(386,494)<|point_end|>"

E. Benchmarks

In this section, we will introduce our benchmark to test the capability of the Visual Language Models.
We also divide the benchmarks into three sections: world knowledge evaluation, visual recognition
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Table 2 | Summary of Minecraft knowledge questions and answers Evaluation.

Category Quantity Example Question Example Answer

Craft 9 What materials are needed to
craft a jukebox in Minecraft?

8 Planks and 1 Diamond.

Plant 5 What is the maximum height
sugarcane can reach in
Minecraft?

3.

Mobs 12 What happens when a creeper
gets struck by lightning in
Minecraft?

A creeper becomes a charged
creeper.

Kill 3 Can shield block crossbow at-
tack in Minecraft?

No.

Enchant 3 What happens if the player put
on an item with Curse of Bind-
ing enchant in Minecraft?

It cannot be removed until the
item breaks or the player dies.

Potion 4 What materials are needed to
craft a potion of poison in
Minecraft?

Water bottle, Nether wart,
blaze powder, spider eye.

Biomes 4 Which biome is the only place
you can find blue orchids in
Minecraft?

Swamp.

Architecture 7 How many chests are typi-
cally found in a shipwreck in
Minecraft?

1 to 3.

evaluation, and spatial grounding evaluation. For the first two datasets, we wrote most of them
ourselves, while others were obtained from freely available examples on the Internet. We organized
them into open question and answer formats. For the spatial grounding evaluation tasks, we adopted
the same method to collect data as for the Visual Grounding Dataset D, ensuring that the test set
does not overlap with the training dataset. Below is a detailed introduction:

E.1. World Knowledge Evaluation

For World Knowledge Evaluation, we divided it into eight subcategories: craft, plant, mobs, kill,
enchant, potion, biomes, and architecture, with a total of 47 test questions. For each entry, we
provided the correct answer. A detailed description is shown in Table 2.
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Knowledge Evaluation

Question: In Minecraft, what type of tool is best suited for digging Mycelium?
GPT-4o: A shovel is the best tool for digging Mycelium. [Explanation: In Minecraft, Mycelium is a block that can be
quickly and efficiently broken using a shovel. Like other dirt-based blocks, using a shovel will speed up the process,
making it much faster than breaking it by hand or with other tools. Additionally, enchantments like Efficiency on your
shovel can further increase the speed at which you can dig Mycelium.]
Qwen2-VL: A Pickaxe. [Explanation: Mycelium is a special type of grass block in Minecraft that can only be found in
The Nether, a dimension that can only be entered after the player has crafted the Nether Portal. To dig Mycelium, you
will need to have a Pickaxe in your inventory. The Pickaxe is a tool that is used for digging, breaking, and mining blocks.
It is the most efficient and effective tool for digging Mycelium because it has a higher efficiency for breaking blocks than
other tools.]
JARVIS-VLA-Qwen2-VL:A shovel is the best tool for digging Mycelium in Minecraft.

E.2. Vision Understanding Evaluation

For Vision Understanding Evaluation, we divided it into five subcategories: scene, object, info,
inventory, and OCR, comprising a total of 43 test questions. For each entry, we provided an image
along with the correct answer. A detailed description can be found in Table 3. Specifically, the Scene
category involves the game environment, including biomes, time, and weather; the Object category
relates to objects within the player’s view; and the Info category includes aspects of the player’s
experience, health, hunger, and hotbar status.

Table 3 | Summary of Vision Understanding Evaluation.

Category Quantity Image Example
Question

Example Answer

Scene 11 What biome you
think is the player
currently in?

Mushroom Fields
biome.

Object 13 Are there any
hostile mobs in
the picture?

No, there are only
4 pigs in the
picture.

Info 7 Is the player’s
hunger bar
currently full?

No.

Inventory 6 Is there any oak
wood in the
inventory?

Yes, there are oak
wood planks in
the inventory.

OCR 6 What instructions
are visible on the
screen?

Open your
inventory Press e.
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Vision Understanding Evaluation Examples

Question: What time of day is it in the game?
GPT-4o: It is difficult to determine the exact time of day in the game due to the rainy weather, which can create a
darkened sky. However, based on the darkness of the surroundings, it appears to be night or close to night. Rain in
Minecraft makes it harder to see the exact position of the sun or the moon, but the overall dim lighting suggests it
is either late evening or night time.
Qwen2-VL: It is daytime in the game. The bright light and the visible sky indicate that it is daytime.
JARVIS-VLA-Qwen2-VL: The time of day in the game is night. This can be determined by the dark sky and the
presence of rain in the screenshot. In Minecraft, night begins when the sun sets and the moon rises. During
nighttime, the sky darkens, and if it’s raining, you’ll see rain particles falling from the sky. Additionally, night is a
more dangerous time in Minecraft as hostile mobs spawn more frequently.

E.3. Spatial Grounding Evaluation

For Spatial Grounding Evaluation, we used 100 GUI data entries and 236 embodied data entries, as
seen in Table 4. We required the model to output the points location of a specified object in the image.
If there were no points, the bounding box would be used as a substitute. The output results will be
normalized to the range [0, 1000).

Table 4 | Summary of spatial grounding evaluation results for visual grounding tasks.

Category Quantity Image Example Question Example Answer

GUI 100 Point the wheat_seeds [284,206]

Embodied 236 Point the oak_leaves. [315,174]

E.4. Evaluation Metric and Result

We designed a customized evaluation method to assess the performance of models in answering
the questions. For World Knowledge Questions and Visual Understanding Questions, we explore
the utilization of LLMs as judges. We selected GPT-4o (OpenAI, 2023), a state-of-the-art LLM to
serve as the judge. The judge model first reviews the responses and compares them to a set of
expertly crafted reference answers. Subsequently, the judge assigns a score of correct or incorrect. For
visual grounding tasks, we directly score the responses of the evaluated model based on a rule-based
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Model Model Size World Knowledge Visual Understanding Visual Grounding

Acc Rank Acc Rank Acc Rank

GPT-4o (Achiam et al., 2023) - 96.6 1 76.7 1 - -
GPT-4o-mini (Achiam et al., 2023) - 75.9 2 62.8 4 - -

Llava-Next (Li et al., 2024a) 8B 19.0 8 41.9 10 - -
Molmo-d-0924 (Deitke et al., 2024) 7B 12.1 10 58.1 5 24.8 3
Llama-3.2 (Meta, 2024) 11B 20.7 7 44.2 9 - -
Qwen2-VL (Wang et al., 2024b) 7B 17.3 9 46.5 7 16.6 5

Qwen2-VL (Knowledge) 7B 65.5 5 46.5 7 16.6 5
Qwen2-VL (Vision) 7B 62.1 6 65.1 3 19.8 4
Qwen2-VL (Grounding) 7B 67.2 4 51.2 6 63.6 2
JARVIS-VLA-Qwen2-VL 7B 70.7 3 76.7 1 88.0 1

Table 5 | We compared the performance of various VLMs using our benchmark, including commercial large
models (GPT-4 and GPT-4-mini (OpenAI, 2023)), open-source models (Llava-Next (Li et al., 2024a), Molmo-
d-0924 (Deitke et al., 2024), Llama-3.2 (Meta, 2024), and Qwen2-VL (Wang et al., 2024b)), as well as
JARVIS-VLA. The results demonstrate that our method significantly enhances the core capabilities of these
models, although there remains a gap when compared to state-of-the-art models.

Methods Models World Knowledge Visual Alignment Spatial Grounding

Raw Llava-Next-8B 18.9 41.8 - 26.7 10.0
ActVLP Llava-Next-8B 55.8 60.3 - 53.3 16.6

Raw Qwen2-VL-7B 17.3 46.5 16.6 83.3 0.0
ActVLP Qwen2-VL-7B 70.7 76.7 88.0 86.7 83.3

Table 6 | Ablation experiments on base model and model structure. We adopt ActVLP on Llava-Next-8B (Li
et al., 2024a) and Qwen2-VL-7B (Wang et al., 2024b) to validate the robustness across different base vision
language models.

approach. Below are the performances of some models we are interested in under our benchmark:
Table 5.

F. Ablation with different Pre-trained VLMs

In this section, we examine the impact of prior training on a VLMs regarding the robustness of the
model’s backbone. VLMs vary in their decision-making capabilities due to differences in training data.
We highlight this and emphasize the influence of the VLM training architecture on the VLA.

We compare two models, Llava-Next (Li et al., 2024a) and Qwen2-VL (Wang et al., 2024b), which
utilize different pretraining datasets and image processing techniques. Their raw VLM performances
and post-training results on various auxiliary tasks, along with downstream imitation learning
outcomes, are presented in Table 6.

Both Llava-Next and Qwen2-VL demonstrated more than a 30% increase in downstream task success
rates after undergoing ActVLP post-training. Indicating that improving model performance through
visual language post-training is robust across different models.
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